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Improved Accuracy By Adapted Mesh-Refinements 
in the Finite Element Method 

By Kenneth Eriksson 

Abstract. For appropriately adapted mesh-refinements, optimal order error estimates are 
proved for the finite element approximate solution of the Neumann problem for the 
second-order elliptic equation Lu = 8, where 8 is the Dirac distribution. 

1. Introduction and Statement of Results. Let ?2 be a bounded domain in RN, 

N > 2, with smooth (C? regular) boundary F. Given xo E ?2 we shall consider the 
Neumann problem 

(I-la) Lu(x) - (a ij(x) ax ) + Eai(x) ax a(x)u 
i,J=1 J ~ =1 

=8(x - xo) in 2, 

N 
(1.1b) lu (x) - , aij (x) -aUnj = O on F, 

i,j=1 I 

where aij, al, and a are smooth functions on C2, where 8 is the Dirac delta 
distribution (unit impulse), and where n = (nj) is the exterior normal to F. 

For instance, Eq. (1.la) models diffusion-type processes where the "source" 
(source of pollution, say) is located at a given point xo. The particular choice of 
boundary conditions has been made merely for convenience. From a mathematical 
point of view, the solution of (1.1) is also the Green's function for the larger class of 
problems: Lu = f in ?2, lu = 0 on F. 

We shall assume that the bilinear form 

A(u, v) I al + ,ai v + auv) dx 

associated with L satisfies the ellipticity-coercivity condition 

(1.2) A(v, v) > CA ||V112 Vv E H, CA > 0, 

where l is the norm in the Sobolev space H1 = H1(Q2). It is known (cf.,e.g., [10, 
Theorem 3.3]) that problem (1.1) admits a unique solution u with a singularity at xo 
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322 KENNETH ERIKSSON 

of order Ix - x01-N2 if N > 2, and log(lx - x01) if N = 2. Away from x0 the 
solution is smooth. 

Noting that for sufficiently regular test functions 4 the solution u of (1.1) satisfies 

(1.3) A(u, ) = o) 

we define for any finite-dimensional subspace Sh of H1 n C(Q2) the Galerkin 
approximate solution uh E Sh by 

(1.4) A(uh, X) = X(Xo) VX E Sh 

By the fact that A(-, *) is positive there exists a unique such Uh. 
Assuming standard finite element approximation properties of Sh, Babuska [2] 

was able to show, for N = 2 and L = -i + I (minus Laplacian plus identity), that 

-lUh UIIO < C?h 
` 

where 11 Io0 is the L2-norm and E > 0 is arbitrary. Later, Scott [14] improved and 
generalized this result by showing that for general dimension N > 2, elliptic opera- 
tors L of order 2m, and normal covering boundary conditions, 

- uh- Ull < C(Xo)h2m-s-N/2 for 2m - k < s < 2m - N/2, 

where k > 2m is the order of approximation of Sh, where C(xo) tends to infinity as 
xo approaches F, and where the Sobolev norm index s may also be negative. Results 
on discrete Green's functions and problems with nonsmooth right-hand sides can 
also be found in, e.g., [3], [5], [7], and [13]. 

In this paper we use finite element spaces Sh on refined (graded) meshes, adapted 
to the known singularity of u, to derive optimal order global error estimates in the 

Li-norm, and to show improved pointwise convergence near the singularity. As a 
corollary we find that when applied to a regular problem our method yields a 
superconvergent approximation of the true solution at xo. We shall now describe our 
prerequisites and results in more detail. 

For simplicity, we shall only consider finite element spaces consisting of piecewise 
polynomials on "simplicial" partitions of U2. More precisely, let 02 be divided into 
elements T in such a way that eachT is the restriction to 02 of the interior of a simplex 
T, and such that the intersection of any two such simplices is either a common face 
of both, or of lower dimension (cf., e.g., [6]). To enable a piecewise polynomial on 
such a partition to fit better the singularity of u at xo, we shall assume that the 
mesh-size is related to the distance to xo by 

(1.5) C-,1diam(T) < h(dist(xo, T)) + hlAla) < CRdiam(T) ViT, 

where CR (R for refinement) is a given constant, h E (0, 2] is the global mesh-size 
parameter, and a E [0, 1) determines the degree of refinement. Thus, elements on 
distance d from xo have diameters of order hda, and those closest to xo have 
diameters of order h1 Al-a) In order to have (local) inverse estimates we shall assume 
that 

(1.6) (diam(T)) < CSm(T) ViT, 

where m(T) denotes the measure JT dx of T, and Cs > 0 is a given constant. Hence 
the simplices X do not degenerate, and the elements T are locally quasi-uniform. We 
shall denote by A = A/'(xo, a) a partition of ? obtained as above and satisfying 
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(1.5) and (1.6), and by oh the corresponding union of simplices T. For Sh= 

Sh (x0, a, r) we take the restrictions to ?2 of all continuous functions on Qh which 
reduce to polynomials of degree at most r - 1 on each simplex X of oh' 

Throughout the paper, c and C, not necessarily the same at different places, and 
C1, C2, C3, and C* will denote constants which may depend on CA, CR, CS, a, r, N, 
the diameter of ?2, the smoothness of F, and the smoothness of the coefficients of L, 
but not on h and x0. 

We are now ready to state our first results, with V denoting the gradient. 

THEOREM 1. Let u be the solution of (1.1) and Uh E Sh(xo, a, r) that of(1.4). Then, 
for a > (r-2)/(r-1), 

(1.7) 1v(Uh - U)||L1 < Ch 

and for a > (r - 2)/r 

(1.8) |lUh - UIIL1 < Ch 

Remark. In the duality argument used in the proof of (1.8), we gain more than one 
power of h near the singularity since the mesh is refined. As a consequence of this, 
we can derive (1.8) for a somewhat weaker refinement than (1.7). 

Remark. We mention without proof that for a = (r - 2)/(r - 1) and a = 

(r - 2)/r there are logarithmic modifications of (1.7) and (1.8), respectively. For 
example, for r = 2 and a = 0 (the quasi-uniform case) we have the well-known 
result (cf. [15] for a special case) 

1V(uh - u) ILl < C(ln h )h. 

Our next result concerns the pointwise convergence and should be compared with 
Theorem 6.1 of [13] for quasi-uniform meshes. 

THEOREM 2. Let u and Uh be as in Theorem 1 with a > (r - 2)/r. Let Ix - xol = d 
and dist(x, F) > d, where d > chl Al -a) for a suitable c > 0. Then 

(1.9) |Uh(X) - U(X) CdI (ln h ) hr 

wherer = 1 if r = 2,r= Oifr> 2. 

Remark. Here the restriction on dist(x, F) is put on only for the ease of reference 
in the proof. The necessary arguments for a proof in the general case can be found in 
[8]. 

Our estimate (1.7) has the following notable implication. 

COROLLARY. Let v be the solution of 
N av Na 

1. = ax(3 ) - J1 ax (aiv) + av =f in S2, 
i,j=1 II 

N av N 

l*v- X aj3 n, + > alvn, = O on F, 
I,J=1 J i=1 

or in weak form, with (, ) denoting the L2(2)-inner product, 

A(#, v) = (A, f ) V E H1, 
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and let Vh E ,Sh(xo, a, r) be the Galerkin approximate solution defined by 

A(x, Vh) = (X fI) VX E Sh. 

Then, for a > (r - 2)/(r - 1), 

(1.10) lVh(XO) - v(X0) < Ch2r-211VII Wr, 

where the latter norm is defined below. 

Remark. Actually, (1.10) holds also for smaller a's, that is, with less degree of 
refinement than stated here. This, and further results in this direction, will be shown 
in a forthcoming paper. 

The proof of the above theorems and corollary can be found in Section 5 below. 
Sections 2, 3, and 4 are devoted to preliminary work. In Section 6 we show that the 
number of elements in our considered refined partitions are of the same order, 
O( h-N), as in the corresponding quasi-uniform ones. Hence the amount of work in 
solving for the Galerkin approximate solution is not essentially increased when using 
our adapted finite element spaces Sh(xo, a, r) instead of standard ones. We also 
show that mesh-refinements of the considered type, satisfying (1.5) and (1.6), can 
indeed be constructed. For completeness, a result on continuous extension used in 
Section 2 is proved in an appendix. This briefly describes the organization of the 
paper. We now close this section by introducing some notation. 

Besides the usual Lp-spaces and norms, we shall use the Sobolev spaces Wp 
with norms 

(/p 

and seminorms 

l/p 

IVI Wk(Q)= ( IDVlP 

where 1,81 = /P + + 1BN iS the length of the multi-index ,B = (fPI.. . BN), Pi > 0 
for 1 < i < N, and where 

For p = 2 we shall write 1 and * Ik for these norms and seminorms, 
respectively, and Hk(Q') for the corresponding space. Hence 11 - 110ut is the L2-norm 
over ?2'. If no domain is specified, it is understood to be all of ?2. 

In the proofs we shall divide ?2 into subdomains characterized by the distance to 
the point xO, or domains defined by 

QJ = {x e S: Ix-xol < 2-J}, and DJ ={x E S2: 2-(j1) < lx-xol < 2-j}. 

Since ?2 is bounded, there is an integer j, such that the Dj's are empty for j < jl. We 
also define dj = 2-J and hj = hdj. Thus dj is proportional to the diameter of ?2j and 

DJ, and, as long as j is not too large so that h1 is smaller than the minimal mesh-size 
h1 Al-a), h, is proportional to the maximal mesh-size on ?2, and Di. We shall 
frequently use the obvious facts that d, < Cd,+I and h_ < Ch_,1. In the technical 
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work below we shall also need to know that the local mesh-size on DJ is "small" in 
relation to the dimensions of D. in the sense that hjd;1 ? c for a suitable (small) 
constant c. This will be the case for allj < J1 if we define J by 2 - = C1hlAl -a) for 
a sufficiently large constant C1, since then, for suchj, 

h1d;-1 = hdj`1 < hdjo'- = 1/C-a. 

Further, in the proofs we shall set DJ = -j1 ? 2 and fix an element '0 such that 
xo E 0. Finally, Bd(y) will denote the ball of radius d centered at y, and Pk(E) the 
space of polynomials of degree at most k restricted to E. 

2. Properties of Sh(xo, a, r). Let Ah = Ah(xo, a) and Sh = Sh(xo, a, r) be as in 
Section 1, and recall, with an obvious method of notation, that each X E Sh is the 
restriction to Kl of a piecewise polynomial X E Sh, defined on kh D Q1. 

We begin by showing the following inverse property, which is well known for the 
interior elements. 

LEMMA 1. For 0 < t < s < r - 1, 1 < p, q < x, T E \h, and X E Sh (or, X E 

Pr-, (,)), 

lI X lp(T) <C(diam( T)) (s-t)-N(1/q- 1p7) IXl W4T) 

Proof. Let T be the unit N-simplex defined by 
N 

T =x ED RN: X > Ofor I < i < N,E xi < 

In view of our assumption (1.6) there are constants c and C and for each element T 

an affine transformation of variables y = AT(X) = BTx + b7, where BT = (biJ) is 
invertible with inverse BT = (be ), such that 

(2.1) cT C AT(T) c AT(T) = T, |bij| < C(diamr())'1, 

and Ib, I < C diam(T). 
Define the operator aT by 

a7X(y) = X(AT1(y)) = X(x). 

Using the chain rule and the estimates on bij and bl', we have 

|DAX (x)I <, N101P(C(diam(T)) )I I p L IYT(Y)I 
IYI=IpI 

and 

Idet( BT) I < N !CN (diam( T )) 

and hence 

lXI Wp(T) < C(diam(TX)) N/P-s 

Similarly, 

IaTXIwq(cT) < C(diar(T))NqtXWq(T) 

Finally, since Pr 1(T) is finite dimensional we have the seminorm inequality 

la 'I Wp(T) < Cla7xl Wq(cT), 

which completes the proof. 
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We shall use the following consequence of Lemma 1. Let Dh C DJ, j < J1, where 
Dh is a mesh-domain, that is, the interior of the closure of a union of elements. Then, 
for X E Sh, 

(2.2) ||X||1,Dh < Ch2 ||X||o,D*, 

where h1 = hdJa is the local mesh-size on DJ D Dh. 

We now turn to the question of approximation properties of Sh(xo, a, r) and shall 
first prove the following basic result. 

LEMMA 2. For each element T E Ah there is a neighborhood OT Of T and for each 
v E L1 an interpolant v1 e Sh of v, such that diam(OT) < C diam(T), and such that for 
0 < 1<m <r, I <p ooaad v EW p( 00, the estimate 

(2.3) 1 |v- VIIWI(T) < C(diam(T)) mIvlw.(oT 

holds. 

Proof. The definition of v, is complicated both by the fact that the boundary is 
curved and by the fact that a function in L1 does not have well-defined point values. 
Hence, we shall first extend v outside 02 with retained local regularity properties. We 
then choose a set Q of interpolation points where given values determine a function 
in Sh uniquely. To each z E Q we assign a certain mean value of the now extended v 
over a locally defined small neighborhood of z. Finally, we take as v, the restriction 
to Q of the function in Sh determined by these values. For this v, we then prove the 
asserted estimate. 

(i) Extension of v. By Lemma A of the appendix there exists a linear extension 
operator E: L1(Q2) -- L1(RN) and constants CE and C such that for x GE 2, d > 0, 
O < k < r, 1 < p < x, and v E Wp k(Bcd(x) f 0), 

(2.4) |IEvll Wk(Bd(x)) < CIIVII Wpk(BcEd(X) n a) 

(ii) Interpolation points. Let AT be as in the proof of Lemma 1 and set QT= 

AT-;(Qr), where 

N 

Qr =xE T: xi (E j/(r - 1):j = O,...,r - 1},i= 1,...,N, Ex,<1). 
i=1 

Since a polynomial in Pr-l is determined by its values in Qr (cf. [6, Theorem 2.2.1]) 
and since Pr -I is preserved under nonsingular affine transformations of the variables, 
it follows that given values in QT determine a unique polynomial in Pr-l Hence, 
given values in the set Q = UTQT determine a unique piecewise polynomial in Sh. 

(iii) M7Wean value functionals Mz. Set OT = A-1(B2(O)). This set is a forerunner to the 
neighborhood OT of T mentioned in the lemma. In fact, for interior elements we shall 
take OT = OT. For z e Q let Oz be the intersection of all OT for which z E T. We 
shall define Mz: L1( Oz) -- R as a linear mean value functional such that Mz p = p ( z) 
for p E Pr- 1. For this purpose, let M be a (fixed) bounded function with support in 

BI(O), and with the property 

(2.5) f M(y)p(y)dy=p(0) VP EPr- 
B1(O) 



ADAPTED MESH-REFINEMENTS IN THE FINITE ELEMENT METHOD 327 

Consult [9] for the construction of a smooth such M. Let B,(z) be the ball of 
maximal radius contained in Oz. As a consequence of (1.6), E = E(z) is of order 
diaml(T) for each T with z e T. Set 

M,(x) = NM((X -Z) 

and define for z e Q 

Mzf- M?(x)f (x) dx. 
Be(z) 

By (2.5) there follows 

(2.6) Mzp=p(z) VP EPr-e1,VzEQ, 

and since supI M, = NsupIMI we obtain 

(2.7) lMzf I < C(diam(T)) jjf JJLi(O.), 

with C independent of z, , and f. 
We are now ready to define v1. Given v E L1 and its extension Ev, let v1 be the 

restriction to Q2 of v, e Sh determined by 

v(z) = Mz(Ev) Vz E Q. 

With v, thus defined we shall now proceed to prove (2.3), using a technique similar 
to that in [4]. 

(iv) Functionals FT. Let :TT L1(T) -P be defined by 

Tf (Z) MZf VZ E QT, 

and note that by property (2.6) of Mz 

ITTp 
= P VP E 

Pr_i1 

Let a7 be as in the proof of Lemma 1 and a- 1 its inverse. Associate with each T the 
sublinear functional FT on Wp'(B2(0)) defined by 

FT(w) = Ila7TTa7w 
- Ww(T) 

We assert that 

FT(p) = O Vp E Pr-, 

and that 

FT(W) < CIIWII WP (B2(0))- 

The first claim is obvious since for p E Pr- 1, 

aT7TTa p = aTaT P p. 

For the boundedness of FT, it is sufficient to show that 

aT TTaT W|| Wl(T) < Cll 1WP (B2(0))- 

Since a 1T Ta-Iw E Prl' and since IIL (Q ) and 1 IIW'(T) are equivalent norms on 
Pri(T),wehaveforsome z E T, 

Ila7TTa W|| Wl(T) < C IaTrTa7 W1L,(Qr) 
= 

Cla 7Ta 1w( z)| = C|Mza7lw|. 
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To reach the desired estimate from here we use (2.7) and change variables, 

|M,aT -W|I < C (diam( T)) ||laT'WjjLj(o,) <- C||W||LI(B2() < Cllwll Wp (B2( 

Since FT is sublinear and vanishes on polynomials, we have 

FT( w) FT(w -P ) + FT(p) = FT(w -P ) VP P V 

so that by the boundedness 

FT(w) < C inf ||w -pllWp(B2(0)) 

By the equivalence of the seminorms infpp .11 - pI w- and w I . (cf. Theorem 1 
of [4]), we obtain 

FT(w) < CjWj WP-(B2(0)) 

(v) Proof of (2.3). Let v, Ev, v,i, and v, be as above and note that a'v = a,7rEv = 

a yTTa -la Ev on T. Hence 

Ila TV - aT Ev||Wp (T) =FT (a Ev). 

Changing variables, we thus obtain 

I|- VI W (T) p i EV| WP(T) 

< C(diam(T)) N//P-i - aTEvjjW (T) = C(diam(T)) NIP-FT(aTEv) 

< C(diam(T)) N/P-I (aEv Wp (B2(0)) s C(diam(T)) mlIIjEvI w'(O ). 

In the case OT c Q this shows (2.3) with OT = OTQ since Ev = v on Q. For elements 
near the boundary with some part of OT outside Q we take OT = BcEdA(x) n fS 

where BdA(x) is the ball of smallest radius containing 0,' and with x E S2, and use 
(2.4). In both cases we have shown the desired estimate (2.3). The estimate of 

diam(OT) is obvious by our definitions. This completes the proof. 
We shall use the following consequences of Lemma 2. Let D' c D" c lj-l be 

such that 0T C D" for each T which intersects D'. Then 

(2.8) j|VI 
- vI(l D' < Ch ||(V(Im,D". 

For by assumption there is a mesh-domain Dh such that D' C Dh C D" and with 
OT c D" forT c Dh, and hence 

II[ - v|(1D' I ((vi - (,Dh = E ((vi - (1,T 
T7 Dh 

< h(-1) L 1IV112 o Ch2(m l)lVIlm2D 

TC Dh 

where for the last step we have also used that at each point there is only a finite 
number of overlapping neighborhoods OT. Further, we have of course the global 
estimate 

(2.9) lvi - vllwi < Chrlll Ilwr. 

We end this section with a super-approximation result. 
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LEMMA 3. Let Dh C DJ be a mesh-domain and Dh the corresponding union of 
simplices. Further, let -q be a smooth function which is constant outside Dh (on each 
component of int(o2h) \ DO ) and satisfying 

liWk2h) < p,djk, 0 < k < r. 

Then there is a constant Ct > 0 andfor each given Vh E Sh an interpolant ' E Sh Of 'Vh 

such that SUpp('qVh- C Dh, and 

-llVh -i 1,Dh < C,(hjdj-IlVhlll,Dh + hjdI 21Vhlo ,Dh)- 

Proof. In contrast to the situation in Lemma 2, the function 'qVh which is to be 
approximated is now continuous. Hence, we take as D the restriction to S2 of D E Sh 

defined by 

0(Z) =(7q h)(Z) ylZ E Q 

Obviously, supp(qvhh- C Dh, and the desired estimate over Dh follows easily if 
we prove the corresponding estimate on each individual T C Dh. 

For this, let F be the functional on Woo(T) defined by 

F(w) = lw - 
UITW11T, 

where I Tw E Pr -1 is determined by 

UTW(z) w(z) Vz E Qr 

Clearly, F is bounded on Woo(T) and vanishes on Pr-l Hence, as in the proof of 
Lemma 2, 

F(w) < CVWr(T) w E Woo(T). 

With a7 as before, note that by our definitions, 

Jq 0h)) =Ila Ja(qh) T a111,T' 

and hence, changing variables, 

| - t|1,7 T C(diam( T)) N/2 
1-a'(Ia ) - a7| T 

- C(diam('r)) N/2-lF(a()) - C(diam(T)) N/2- 'la7( )W(T) 

We next use seminorm inequalities on Pr_ (T) together with the fact that any rth 
derivative of a VhIlT E PrI (T) vanishes to obtain (with c as in (2.1)) 

r 

|aT('h ) I WrW,(T) 
= 

laT711ThI W(T) l L a7 Wk(T)lavhLrW-X(T) 
k=i 

r-1 

< C E a TyI Wk(T)IaTVhll,cT + ClaT7'I Wr(T)llaTVhIIO cT 
k=i 

so that returning to the original variables, 
r-1 

|J (7 h) IW,,r(T) < CIIVhlll,T E 11 q 11 k(Q)da ) Oh 

k=1 

+ C(diam( ))rN/2d -rIh 
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or altogether, 
r-1 

I-qVh - T < CIIVhIIl T E 17Iwk (Qh)(diam( T)) + C(diam(T ))r-1d-rilvI|| 
k=i 

The desired estimate now follows by the assumptions on -1 and the obvious estimates 

diam(T) < Chi and hjdj-l < C, 

which hold since T C D C DJ. This completes the proof of Lemma 3. 

3. Elliptic Regularity. In this section we shall first recall some well-known elliptic 
theory. We then introduce an approximate Dirac delta distribution and the corre- 
sponding approximate solution ii of (1.1), and derive estimates by which the proof of 
Theorem 1 may be reduced to estimating Uh - u. 

LEMMA 4. Let the bilinear form A(., *) and the operators L and / be as in Section 1. 
Then, given f E L2 there is a unique v E H1 such that 

(3 .1) A (v, )=( f , V4 t E- H1 

Actually, v E H2 and 

(3.2) JIVII2 < Cilf 110, 

and v is the unique solution of Lv = f in Q, lv = 0 on F. Moreover, there is a function 
g(x, y), the Green's function, which is smooth off the diagonal x = y, and such that 

fClx - I-N+2-1fi1--yI if -N + 2 - II- 1Hy < 0, 
(3.3) IDIPDYg(X, Y)I < C(ln(Ilx - yK) + I) if N = 2, Ii = 1-yl = 0, 

and 

(3.4) v(x) = f g(x, y)f(y) dy (a.e.) in U. 

Similarly, there are functions v and g (in general different from the above v and g) such 
that 

(3.5) A(4, v) =(4,f ) V E H 

and for which (3.2) through (3.4) hold. 

These facts are all well known. The existence of unique Hl-solutions of (3.1) and 
(3.5) is guaranteed by the Lax-Milgram lemma, which can be found in e.g. [6]. The 
H2-regularity is a special case of more general regularity estimates presented in [11]. 
For the existence of Green's functions we refer to [10]. 

We shall use the following consequences of Lemma 4: Let v be the solution of 
(3.1) or (3.5) with supp(f ) c f, and set dx = dist(x, Tb). It follows from (3.4) and 

(3.3) that 

(XI= fI Dg(x, y)f (y) dy < Cd IN+2 111fL 

and hence, forj < JI, 

(3.6) lIV11r,D, < CdJ / IVIIW'(D) < Cd- N/2? + 2r 1f11 
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Similarly,, for i < j and f with support in QJ we obtain (using (3.2) for i = j - 1 and 
i =j) 

(3.7) 1vII2|D| < Cd- N/2d N/2 lf 11|| 

and for f with support in Di 

(3.8) IvIL2 Q Cdj N/2d, //2 f loD f 

Following our program, we shall now define an approximate delta distribution S 
and the corresponding approximate solution iu of (1.1) in such a way that the discrete 
solution uh of (1.1) is also the Galerkin approximation of iu. For this purpose, recall 
that x0 E 

- 
and let 8 be the L2-projection of 8 onto Pr-i( ) and extend 8 by zero 

outside 
- 

so that 

(3.9) (8,X)=X(x0) VXESh. 

Further, let iu be the solution of 

(3.10a) Lu = in Q, 
(3.10b) lii= 0 onF. 

Since X = on To for some X E Sh (note that 0 ? Sh), we obtain by (3.9) 

118112 = B(xo), so that by Lemma 1, 

01 ll C (diarn( T )N21 l 

or 

(3.11) HI8l0 < C(diam(TO))N/2, 

and hence 

(3.12) 1111L C. 

Setting E = diam(T0), so that T c B,(xo), we shall now estimate iu - u in terms 
of e. 

LEMMA 5. Let u be the solution of (1.1) and iu that of (3.10). For E E (0, 4] we then 
have 

|IV(U-U)IIL1 < CE, and ||U-UIIL, < Cc2In?. 

Proof. Set e = u - u and note that 

1 V7 eiIL, < 117 iUIIL1(B2e(X0)) + 11 7 1UIL (B2,(x0)) + 1 1V eIILl(j\B2e(XO)) for i = 0, 1. 

Since u(-) = g(-, xo), where g is the Green's function, we have by (3.3), with 
R = Ix - xol, 

IV'UIILi(B2,(X0)) < Cf R11(l R + 1) dR I C>2-'(in1) for i = 0,1, 

where a = 1 if N = 2 and i = 0, and a = 0 otherwise. Similarly, 

iu(x) = f g(x, y)8(y) dy, 
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so that empJoying also Lemma 1 and (3.12) we find 

|V Ui(X)I < |VXg(X -)IIL1(TO)11811L (To) < C- 
- 

(In1/,) 'e- N 

and hence, 

11 VIL1(B2(XO)) < C2i (ln 1/c) for i = 0, 1. 

It remains to estimate e = - u on Q \ B2,(XO). 
By a Taylor expansion 

g(x, y) = g(x, xo) + (y - xo) vyg(x, xo)t 

+ (Y- xO) _Vvg(x, () (y -XO) 

where t = t(y) = Oxo + (1 - O)y, 0 < 0 < 1, and where t denotes transpose. Since 

e(x) = f (g(x, y) - g(x, xo))8(y) dy, 

(note that fTO 8(y) dy = 1) and since 

J Spdy= O p EP( CPri)such thatp(xo) = 0, 

we obtain 

e(x) = f (y - xO) v2g(X, ((y)) *(y - Xo)t8(y) dy. 

Therefore, using (3.3) and (3.12), 

Ie(x) I Cc2sup IVv2g(x, y) I CE21x_xON forx E- \B2,(XO) 

Similarly, by a Taylor expansion for vxg(x, y), we obtain 

IVe (x)I < CE2 sup |V2vXg(x, Y)j < Cc21x _-N for x E Q B 

Hence 

11O11Lj(Q\B2 JXO)) < Ce In 1/e 

and 

II 
V0jjL1(Q\B2,(XO)) 

< Ce. 

Together, our estimates now yield the proof. 

4. Local Estimates. Below we shall derive local Hl-error estimates similar to the 
interior estimates of Nitsche and Schatz [12]. But first we shall prove the following 
global estimate. 

LEMMA 6. Let f E L2 have support in Qj,7j < J1, and let v be the solution of (3.1) (or 

(3.5)) and Vh E Sh = Sh(Xo, a, r) that of 

A(vh, X) = (I, X) (orA(X, Vh) = (XI f)) VX E Sh. 

Then, IIVh - Vil1 < ChlIf ll . 
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Proof. VJsing the coercivity and continuity of A(-, -) together with the orthogonal- 
ity with respect to A(-, ) of Vh - v and Sh, we have by standard arguments 

||Vh - V CV - VX E Sh- 

Since 

11 11 11 _12 , + E 11 _12 , 
i <j 

we have, thus, in view of (2.8), 

IlVh-Vl < C(hjflvll?__ + Ih2v ,Di) < C(h2v| + 2h,Iv22,D,). 
I (j z<j 

Using the elliptic regularity estimates (3.2) and (3.7), we obtain 

||Vh - V||1 < C( h 2 + djNZh12dr N) If 1, 

and since a < 1 and N ? 2, 

hl2d7 N = h 2 d 2a-N = h2 E 2-i(2a-N) 
bs I ij j 

= h2 J(2a-N)/(1 22a-N) 
N Chfrl-N 

This completes the proof of Lemma 6. 
We now turn to the local estimates. 

LEMMA 7. Letj < J1 and let v E Hr(DJ) and Vh e Sh satisfy 

A(V h-v, X) = ? X Sh with support in D1 

Then, 

||Vh - V||1,D, < C(h71lVlrDi + djlVh - VIIO,Dl) 

Proof. Let DJ c Dh c D c D c DJ, where Dh and D' are mesh-domains, and let 
71, 71', and & be smooth cut-off functions such that 

=1 on DJ, 7 = O on Qh \Dh 1 wk() Cdk for O < k <r, 

'= 1 on Dh, 71 =? onh 2h \Dh, 1W h)Cd forOn I k < r, 

I,=1 onD", = O onQ72\D, kolwk(Q) Cdjk fork = 0,1, 

and such that if T n D # 0 then OTC Dij, where OT is the neighborhood of T 

defined in Lemma 2. Note that this construction requires that the local mesh-size on 
DJ \ D . is sufficiently "small" which is the case for j < J1, since J1 was chosen not 
too large. 

In order to prove the desired estimate, it is sufficient to show that 

(4.1) IlVh 
- 

VIil D < C(IIVIII,D + dj ||v||o,D + dj1IIVh 
- 

V110,D), 

since then, by replacing v by v1 - v and Vh by vI - Vh and using hjdj-l < C, it 
follows from (2.8) that 

||Vh - V||1,DJ < C(IIVI - 
V||1,D 

+ dj 1Iv1 - 
VIIO,D + dj1IIVh - 

vIIO,D) 

< C(hy IIVIIr,D1 + djyllVh 
- 

VIIO,DJ). 
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In order to prove (4.1), we have first 

IIVh - VI|1,D, < |IVh -(WV)hIll,D, + II(WV)h - WVIII,Dj, 

where 

A((wV)h - wV, X) =O VX E Sh 

defines () v)h E Sh. By the Hl-stability of the projection (-)h and the properties of 
w, we have 

II(WV)h - WVIII < CIIWvIII < C(IIVII1,D + d1 I |V|O,D). 

It thus remains to estimate the term IIvh - (Wv)hlll,D, 
We shall show below that if wh E Sh and 

(4.2) A ( wh, X ) =O? VXe Sh with support in D', 
then 

(4.3) |Wh, D, IW CdjwhIIo D. 

Since (4.2) holds for wh Vh - (v)h c Sh, we obtain from (4.3) 

IIVh (wVh111D~ _Cdjjvh - (WV)hIIO,D' ||Vh -(WV)hlll,Dj < Cdj |V -(Uh.h 

CdlllVh - VIIO,D' + Cdj IIWV -(WV)hIIO,D', 

where the last term still has to be estimated. For this purpose, we shall use a duality 
argument and show 

(4.4) hwV -(WV)hhIO,D' < Chillwvlli, 

from which the desired estimate follows easily. It thus remains to prove (4.3) and 
(4.4). 

For the proof of (4.4), let 1 e H1 and h E Sh be defined by 

A(4, 4T) = (4, 4 ) VE E H', and A(X,h) = (X,+) VX E Sh 

where Ec L2 and supp(p) c D'. By our definitions and by Lemma 6 we then have 

(Wv - (WV)h,) A(Wv(Wv)h, 1) = A(wv- (WV)h, D - Oh) 

= A(wv, D - Oh) < CIIWvIIID- Dhll l CIIwvIlhjkIIIoID'h 

Since 4 E L2(D') was arbitrary, (4.4) follows by duality. 
In order to show that (4.2) implies (4.3) we shall use the super-approximation 

property. With 'q as above we have by the coercivity 
2 11~2 1 

||Whlli,Di < I,Wh I < -A(Wh I h)W 
CA 

Further, 

A(7Wh Wh) =A(Wh n Wh) + J( aiax wh dx 

(a(-( 
a ,(wh) a? d+ ([x La w2 ax a) dx 

-J{E,akWh2;ax , Whax J .. 
ij h a ax 

+f( a w 2:~ dx, 
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where the last four integrals can be estimated by 

C( d; IWhIIO0DiLI1WhIl1 + dy 2lWhII0,D) h< CAI TWh + CdJI WhII0,Dh 

Altogether, this shows that 

||WhII1,D < CA(wh, ?Wh) + Cd; hWhII0,Dh 

In view of (4.2) and Lemma 3 we may subtract a suitable D E Sh from q22Wh and 
hence obtain 

A(wh, l2Wh) = A(Wh, 2Wh - 

< CIIWhII1,Dh ( hjdj7 |Whlll,Dh + hjd; 21WhIo,Dh) 

< c(hjdJ lwh1IIW Dh + dJ Whllo Dh) 

where again we have used the fact that hjdj-1 < C. We have thus shown that 

Whll,DJ C(hjdjlllWhlll ,Dh + d; ,whl, Dh). 

Repeating the above arguments on I Wh II 1, Dh'we obtain 

|Whll,D < ChJdJ (hId lWhlll ,D + d; Whll ,D') + Cd2WhII0,Dh 

< C(hdJ I lWh D' +dy 11Whll DI 

from which an application of the inverse estimate (2.2) completes the proof of (4.3) 
and hence, of the lemma. 

5. Proofs of the Theorems and the Corollary. 
Proof of Theorem 1. Let ui be the approximate solution of (1.1) introduced in 

Section 3, and let uh E Sh be the discrete solutions defined by (1.4). In view of 
Lemma 5, since - = diam(T0) is of order h /(l-a), it is sufficient for the proof of 
Theorem 1 to show that for the appropriate a's 

(5.1) II|V(Uh - 0)IL, < Ch 

and 

(5.2) |lUh - UgIL1 < Ch , 

respectively. 
For the proof, let J < J1 be an integer such that 2-J = C * h1 ,/(l - a) for a suitably 

chosen sufficiently large constant C, to be determined later. Thus dj, hj, and 
hlAl-a) are all of the same order, but h d;1 = 1/C*` can be made small by 
choosing C * large. Noting that by our definitions 

(5.3) A(uh -,X) = VX ESh, 

we shall now prove first (5.1) and then (5.2). 
Set e = uh -ii. We have at once, using Schwarz's inequality, 

11 VeIL1 = I VeL1(Qj+1) + Z |VeILj1(D ) Cd< / + C E dJN/ el1 DI 
J<J j<J 
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The term associated with QJ +1 can be appropriately estimated, for by Lemma 6 and 
(3.11) we have for a > (r - 2)(r-1), 

dJN12 l Cd2h. < CdN2/2h h A - 1N-a) 

= CCN12h - CCN2/2+ahlAl-a) < C(C r)h-1. 

Setting 

S = E d J/2IIeIIlD, 
j<J 

we shall show next that 

(5.4) S < Chr-I + IS. 

Hence it follows that S < Ch' 1, so that showing (5.4) completes the proof of (5.1). 
As a matter of fact, we already have that 

S < C(C*)h 1 + E d N2|IeI| 

J<J 

We now make use of Lemma 7 to obtain 

S C(C*)hr-I + C E dJY/2(h1r-IlrDi + df1lelODi) 

j<J 

. C(C*)hrI + C E djN/2hr- liflr,D + C E d"/2-1jejOD. 
j < j J 

By (3.6) and (3.12), 

) ll"lIr,DJ ~~< Cdj / 22 rjj8jj" C-NI2+2-r, (5.5) liUlr,D. Cddr/?2j. 

so that for a > (r - 2)/(r - 1), 

dN12 jr-I|"l D C d2- hr-I r-I , 2-r+a(r-1) < Chr-I 
j<J jsjJ>jl 

We have thus shown 

(5.6) S < C(C*)h + C2 E d j 
j J 

where the last sum remains to be estimated. 
For this purpose, let ej be of unit L2-norm and such that lIelO,D = (e, ej), with 

supp(ej) C Dj, and let v be the solution of 

A(4, v)= (4,ej) V4 C H1. 

Hence lIelO,D = A(e, v), and owing to (5.3) (with X = v1), the continuity of A(., *), 

and property (2.8) of the interpolant v,, 

IIeIIO,D = A(e, v - v,) 

< Cjjejj, ,J+11jv - v,jjj,Qj_l + C , jjejjI,D,DjV - VIlIIID 
l$J 

< Chjejj,+1 jJv J + C E hjjjejI,D,IIV112,D1 
i<J 
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Employing the regularity estimates (3.2), (3.6), and (3.7), we obtain 

(5.7) Jje|jO D, < Ch jdJ N/ d - N/ jjejjI Qj 

+ Cd;-N/2 
Y hidN/2IIlelIl 

D + Cd N/2 ,hld- N/2Ilell ii II liD, JL...dll~IIII, D,, 

j< iA J i j 

and end up with 

jejjD < Ch d /2d Il/2ell + CdN/2hj E d> 'e2IlDe 
J<i<J 

+ CdJ /2 max(h,d N) E di / Ilell 

< C(C*)hJhr-ld-N/2 + Cd-N/2h1S 

So, for C * sufficiently large, that is, for h d 1 sufficiently small, we conclude 

C2 E dJY"/2 -1jejjOD < C(C*)hr-lhj dj-l + CS E d, lhj 
jAJ j<J jAJ 

< C(C*)hr-lhhdj-1 + CSh d-71 < Chr-1 + S, 

which together with (5.6) shows (5.4) and completes the proof of (5.1). 
We now turn to the proof of (5.2) and have at once 

(5.8) Ilell = Jje11Lj(Qj+j) + Jje11LI(D,) 
j<J 

< CdN"2 Jjejj0,Q + C E dj12/ IellO D . 

j < 

As before, we first estimate the term associated with QJ+II Let e+ 1 have support in 

QJ+ , be of unit L2-norm, and such that Jjejj0 QJ+1 = (e, ej+1), and let v solve 

A(4, v) = (4, eJ+1) V4 E H1. 

Using familiar arguments, we have 

JjejjO QJ+1 = A(e, v - v,) < ChjjjejjIQj+1 11V112,Qj + C E hjjjejlI,D,I1v1L2,D, 
JAJ 

< ChjjjejjI,Qj+1 + C E hjjjejlj,D, 
j<J 

where we have confined ourselves to use the standard regularity estimate (3.2) in the 
last step. In fact, we shall only need the weaker estimate 

(5.9) d>/2 Jejj0,QJ < CJhjd N"2 jjejjI,QJ + C , jhJdJN12|JejjlDD, 
j J 

where we assume, for notational simplicity, that jl > 0, that is, that Dj is empty for 
j < 0. (Otherwise, the factorsj must be replaced by, say, JIj + 1.) In order to see that 
the sum in (5.8) can be estimated in the same way, we apply the estimate (5.7) and 
change order of summation with respect toj and i. We thus obtain 

E d ~/2 Jjejj0D < Chj dN2 jjejjI Q 1 1 

+ C E hidi /jejl,D E 1 + C E hid /Ilelll, D, Z dj 
i < J <j < i i <JI z< < J 

< CJh d N12 jejI,QJ 1 + C E ihid N/2Ilell D, 
i J 
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and by this w,e have shown 

(5.10) IlelIL, <CJhjd" /JeJJ1,Q + C L jhjdJN/2 JeJJl D . 

j J 

At this point, in the case of a > (r - 2)/(r - 1), we obtain (5.2) by just applying 
our above estimates on dYN121lell and S. In order to prove (5.2) also for the smaller 
a's we proceed from (5.10) as follows. 

Once again we first estimate the term associated with QJ+1. By Lemma 6, our 
assumption a > (r - 2)/r, and the fact that J is of order ln 1/h, we have 

Jh d N/l CJhddIl/2hINA d-a) h C(C*) Jh5 

< C(C*)ln hh 1a)< C(C*)hr 

Setting 

S = E jhjdj N1 
||eJJ1,D , 

j J 

we shall now prove that 

(5.11) S' < Chr + IS,. 

Since this yields S' < Chr, showing (5.11) completes the proof of (5.2). 
Obviously, 

S' < C(C*)h r + E jhJdJd"/2 JeJlJ,D, 
j<J 

and in view of Lemma 7, 

S' < C(C*)hr + , jhrdjY"/2lrD + C E jhjdN/2l-JeJ0D. 
j <J j<J 

Using (5.5) and our assumption a > (r - 2)/r, we obtain 
r 

jh2d7"2irD < C E Jh;dI I = Chr L jda+2-r r 
Ch, 

j~~~~~J~ ? Ji J ?J 

since the last sum is dominated by the convergent integral 
0 

| (x +1)2-cx dx c =ra +2- r >0. 

We have thus shown, 

(5.12) S' < C(C*)h r + C3 E jhdJN/12-1 JleJoJ,D 
j<J 

and we proceed to find an estimate also for the last sum. 
Using (5.7) for a starting-point, we deduce that 

JJeJ|D < Ch j dN2d- -N12e1 
5, + Cj-ld; N/2S' + Cd NV/2 max (ild-N)SI 

i ~~~~~~~~~~~~~~J <i < J 

< C h d N2dy- N2lgell, + Cj-ld-N/2S, 

where we stick to the convenient assumption j, > 0. For a suitable choice of C* we 
thus obtain 

C3 E jhjdj /2 -1 lell0oD < Chjd7N"2|Ielli E jhjdj-' + CS' E h jdj- 
j< 

J 
S S j C h +j < CJJ j+ <J 

C(C*)j2 h 2 + CS'h jd1 < Chr + IS'. 
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Joint with (5.12), this estimate shows (5.11) and hence completes the proof of (5.2) 
and of Theorem 1. 

Proof of Theorem 2. In view of Corollary 5.1 of [13] and our assumptions, there are 
constants c and C such that for d > chl/(1-a) 

IUh(X) - u(X)j ' C(hd ) r(ln(hd a)) IIUIIWr(Bd/2(X)) 
+ Cd ||Uh - UIILl(Bdl2(x)), 

where we have used that the local mesh-size on Bd/2(x) is of order hda. Together 
with (3.3) and our error estimate (1.8), since a > (r - 2)/r, this shows 

IUh(X) - u(x) Ch (ln(hda ))rdarN+2r + CdNuh - UIL 

?Cd-Nhr(ln) , 

which proves Theorem 2. 
It remains to demonstrate the 
Proof of the Corollary. By the definitions of v and vh, we have 

A(x,Vh -v) = O VX ESh, 

so that using also (1.3) and (1.4), 

Vh(XO) - v(xo) = A(u, Vh - v) = A(u - Uh, Vh - v) = A(u - Uh, vI- v), 

where we take v, E Sh to be the interpolant of v defined in Lemma 2. By the 
continuity of A(., -), the error estimates of Theorem 1, and the approximation 
property (2.9) of vI, we thus have for a > (r - 2)/(r - 1), 

lVh(XO) - V((XO)j CI|Uh - U| llWl VI - V I ChWr2V,lWr- 

This proves the corollary. 

6. Number of Elements. Construction of Refined Meshes. In this section, we shall 
first show that for a in [0, 1), the number of elements in the partitions Ah(Xo, a) iS 

of the same order, O(h - N), as in the corresponding quasi-uniform ones. Hence, the 
amount of work in solving the discrete variational problem (1.4) is not seriously 
increased by using our special spaces Sh(xo, a, r) instead of standard finite element 
spaces. We shall then comment on the possibility of constructing meshes satisfying 
the crucial assumptions (1.5) and (1.6). 

In order to estimate Nh, the total number of elements in Ah, we first note that as a 
consequence of (1.5) there is a constant c > 0, and for each T GE Ah, an associatedj, 
such that 

(6.1) m(T n DJ)> cm(T). 

For eachj, we shall estimate the number NJ of elements T for which (6.1) holds and 
then sum overj. This will yield the desired estimate for Nh. It follows from (1.5) that 
if T intersects Dj, then 

diam( T) > ChdIa, 

and hence, by (1.6), 

m(T) > Ch NdNa 

Since m (D.) < (2dj)N, we obtain 

NJ < Ch -Nd N(l-a) 
J 
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Withj1 as before and a in [0,1), we thus find 

Nh < L NJ N ChN dJN(la) 
C ChN 

j>J1 J AJi 

which proves our assertion. 
We shall now see that a partition satisfying (1.5) and (1.6) can indeed be 

constructed. For notational simplicity, we consider the case N = 2 and xo = 0. We 
first construct a (nontriangular) mesh of the correct mesh-size. Introduce polar 
coordinates (r, 6) and draw for the construction the circles S, of radii r1 = (ih)l Al - a), 
i = 1, 2.... It follows that the distance between the two neighboring circles on 
distance r1 and ri from 0 is approximately 

h 'al-a) h= h(h)al-a)= I a h-x 1= 1-ah 1-a 
hr 

which is the mesh-size required in (1.5). In order to obtain the given mesh-size also 
in the 0-direction we start with the rays r > 0, 6 = 2vri/4 for i = 0,...,3. We 

FIGURE 1 



ADAPTED MESH-REFINEMENTS IN THE FINITE ELEMENT METHOD 341 

then draw, for m = 1,2,... and for i = 0,...,2m?1 - 1, the rays r > r2m, 0 = 
(2i + 1)2,g/2m?2 as in Figure 1. In this way, for 2' < i < 2"m' the annulus 
between S,_- and S, is divided into 2m?2 equal pieces. Since the circumference of Si 
is 2,gr, this implies that each such sector of an annulus is of width approximately 

2vr,/2m + 2- ri/i = hria 

in the 0-direction. Hence the partition so obtained satisfies (1.5). In order to modify 
this mesh into one consisting of triangles also satisfying (1.6) and the "face-to-face 
condition", we replace each sector of an annulus by a corresponding union of two or 
three triangles as shown in Figure 1, and the four sectors closest to 0 by the 
corresponding triangles. It is immediate that the triangles so obtained satisfy a 
minimum angle condition, which for interior elements is equivalent to (1.6). Once 
this is done it is easy, if needed, to modify the mesh so that (1.6) holds also for the 
boundary elements. 

In higher dimensions a similar but somewhat more involved procedure is possible. 

7. Appendix: an Extension Lemma. It is well known that functions in W k(S2) can 
be continuously extended into W2k(RN). In the proof of Lemma 2 of this paper, we 
use local estimates for such extensions. Therefore, we shall show below that by the 
method of extension using reflexions in the boundary (cf., e.g., Adams [1]), such 
estimates are easily obtained. 

LEMMA A. Let i2 be a bounded domain in RN with smooth boundary r, and let r be a 
nonnegative integer. Then there exist a linear operator E: L1(i2) -* L1(RN) and 
constants C and CE such that Ev is an extension of v, that is, Ev = v on 2, and such 
that for x E i2, d > 0, 1 < p < ox, 0 < k < r, and v E Wk(Bcd(x)) the estimate 

(7.1) |IEVll wk(Bd(x)) 
< CIIVII WPk (BcEd(x) n u) 

holds. 

Proof. Given a set D C RN, let us denote by D ? (D-) the subset where YN > 0 

(YN < 0). In view of the assumed regularity of F there exist a finite number of 
diffeomorphisms q, and a finite open cover { Oj } mI1 of s2 such that -I maps 01 onto B 

and 01 n Q onto B', where B is the unit ball B1(O). We shall first construct an 
extension operator F: L1(B+) -* L1(B) such that for y E B+, Bd,(y) C B, and 
i3 E- Wk(Bd,y? V p ( d'(Y ) )' 

(7.2) |IEVII Wk C11511 Wk(B 

and then, using this case for reference, we define E and prove (7.1). 
With y' = (YY19 . . .YN-1), set 

V(Y f9 YN) forYN > 09 

('E mN j { (Y 9, YN/I ) forYN < 0, 
j=l 

where the coefficients m1 are determined by the linearly independent equations 
r 

E mj(_1/j)k = 1 fork = 0,1,...,r-1. 
j=l 
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It is sufficient to prove (7.2) for smooth v's. But in that case, in view of the regularity 
of the extension across YN = 0, we have for k < r, 

|IEII Wpk(Bd(Y)) = IIEVII Wk(Bd,(y)+) + llll Wpk(Bd'(y))' 

and hence (7.2) follows at once. Now, let { f3i I 1 be a partition of unity on S2 subject 
to supp(/3i) c 0? for 1 < i < M, and set 

M 

(7.3) Ev= E A (E(v? -l)o 
J=1 

Obviously, this defines E as a linear extension operator. In order to prove (7.1) we 
first restrict ourselves to the case of suitably small d's and estimate each term in 
(7.3). With i fixed, we may then assume that Bd(x) intersects supp(/3i) (otherwise 
there is nothing to prove) and that Bd(x) C Oi, since supp( fi) is a compact subset of 

01. Let y = -I (x) and let Bd,(y) be the ball of smallest radius containing qi(Bd(x)). 

By the smoothness of ijl and -i l we may further assume that for small d 's, 

BdA(y) c B and that there is a constant Cl such that -q 1(Bd,(y)) c Bcd(X). But then 

11:(~~~~~ E(V?B 1 |(Bd(X)) < C|EV?B1)W(Bd (y)) 

<; C|voi? -1 || Wk(Bd,(y)+) < CIVII Wk(BC(X)n) 

Hence, (7.1) follows with CE = maxI Ci. For the smaller d 's, this completes the 
proof. Since we may as well assume that Ev vanishes outside any given neighbor- 
hood of s2, the estimates (7.1) for the larger d 's follow from what we have proved for 
the smaller d 's by an obvious covering argument. This completes the proof. 
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